Math 246C Lecture 4 Notes

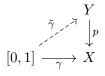
Daniel Raban

April 8, 2019

1 Lifting of Homotopic Curves and Existence of Lifts

1.1 Lifting of homotopic curves

Last time we introduced the idea of a covering map $p: Y \to X$. It has the following path lifting property:



Remark 1.1. If X is path-connected (ok for Riemann surfaces), then $p: Y \to X$ is surjective: Let $x_0, x_1 \in X$, and let γ be a path joining x_0, x_1 . Then for any $y \in p^{-1}(x_0)$, there e is a unique lift $\tilde{\gamma}[0,1] \to Y$ such that $\tilde{\gamma}(0) = y$ and $\tilde{\gamma}(1) \in p^1(x_1)$. This gives rise to a bijection $p^{-1}(x_0) \to p^{-1}(x_1)$. Moreover, the cardinality of $p^{-1}(x)$ is constant.

Theorem 1.1 (lifting of homotopy curves¹). Let X, Y be Hausdorff, and let $p : Y \to X$ be a local homeomorphism. Let $a, b \in X$, and let $\gamma_0, \gamma_1 : [0, 1] \to X$ be paths joining a to b that are homotopic. There exists a continuous deformation $H(t, s) : [0, 1] \times [0, 1] \to X$ such that $H(t, 0) = \gamma_0(t), H(t, 1) = \gamma_1(t), H(0, s) = a$, and H(1, s) = b.

Let $\gamma_s(t) = H(t,s)$. Let $a_1 \in p^{-1}(a)$, and assume that each γ_s has a lift $\tilde{\gamma}_s$ to y such that $\tilde{\gamma}_s(0) = a_1$. Then $\tilde{\gamma}_0$ and $\tilde{\gamma}_1$ are homotopic and have the same endpoint.²

Proof. Set $\tilde{H}(t,s) = \tilde{\gamma}_s(t)$ for $0 \leq t, s \leq 1$. Let us show first that \tilde{H} is continuous. We claim that there exists some $\varepsilon_0 > 0$ such that $\tilde{H}(t,s)$ is continuous on $[0,\varepsilon_0] \times [0,1]$. We have $H(\{0\} \times [0,1]) = \{a\}$. Let $V \subseteq Y, U \subseteq X$ be neighborhoods of a_1 and a such that $p|_V : V \to U$ is a homeomorphism. By compactness of [0,1] and continuity of H, there exists $\varepsilon_0 > 0$ such that $H([0,\varepsilon_0] \times [0,1]) \subseteq U$. Let $\varphi = (p|_V)^{-1} : U \to V$. The curve

¹This theorem is sometimes called the abstract monodromy theorem.

 $^{^{2}}$ Professor Hitrik says "some theorems may not be meant to be discussed in public." After seeing the proof of this, you may agree.

 $[0, \varepsilon_0] \ni t \mapsto \varphi(\gamma_s(t))$ is a lift of γ_s on $[0, \varepsilon_0]$, $0 \le s \le 1$, and by the uniqueness of lifts, $\varphi(\gamma_s(t)) = \tilde{\gamma}_s(t) = \tilde{H}(t, s)$ on $0 \le t \le \varepsilon_0$. We get the claim.

We now claim that H is continuous on $[0,1] \times [0,1]$. Assume that the claim fails, and let (t_0, σ) be a point of discontinuity of \tilde{H} . Let $\tau = \inf\{t : \tilde{H} \text{ is not continuous at } (t, \sigma)\}$. Then $0 < \varepsilon \leq \tau$. Let $x = H(\tau, \sigma)$ and $y = (\tau, \sigma)$; that is, $t = \tilde{\gamma}_{\sigma}(t)$, so $y \in p^{-1}(x)$. Let V, U be neighborhoods of y and x such that $p|_V : V \to U$ is a homeomorphism, and let $\varphi = (p|_V)^{-1}$. By continuity of H, there exists $\varepsilon > 0$ such that $H(I_{\varepsilon}(\tau), I_{\varepsilon}(\sigma)) \subseteq U$, where $I_{\varepsilon}(\tau)$ is a neighborhood of τ and $I_{\varepsilon}(\sigma)$ is a neighborhood of σ . In particular, $\gamma_{\sigma}(I_{\varepsilon}(\tau)) \subseteq U$. We can also assume that $\tilde{\gamma}_{\sigma}(I_{\varepsilon}(\tau)) \subseteq V$. We get $\tilde{\gamma}_{\sigma}(t) = \varphi(\gamma_{\sigma}(t))$ for $t \in I_{\varepsilon}(\tau)$. Let $t_1 \in I_{\varepsilon}(\tau)$ with $t_1 < \tau$. Then \tilde{H} is continuous at (t_1, σ) , so there is a neighborhood $I_{\delta}(\sigma)$ of σ with $\delta \leq \varepsilon$ such that $\tilde{H}(t_1, s) \in V$ for $s \in I_{\delta}(\sigma)$. Now $t \mapsto \tilde{\gamma}_s(t)$ and $t \mapsto \varphi(\gamma_s(t))$ for $t \in I_{\varepsilon}(\tau)$ are both lifts of $\gamma_s(t)$, and by the uniqueness of lifts, $\tilde{\gamma}_s(t) = \varphi(\gamma_s(t))$. In particular, \tilde{H} is continuous in a neighborhood of (τ, σ) , which contradicts the definition of τ . We get that \tilde{H} is continuous on $[0, 1] \times [0, 1]$.

We also need to check that $s \mapsto \gamma_s(1)$ is constant. This is continuous and lifts the constant path $s \mapsto b$. By the uniqueness of lifts, $\tilde{\gamma}_s(1) = \tilde{\gamma}_0(1) \in p^{-1}(b)$.

1.2 Existence of lifts

Theorem 1.2 (existence of lifts). Let X, Y be Hausdorff spaces, and let $p : Y \to X$ be a covering map. Let Z be a Riemann surface which is simply connected, and let $f : Z \to X$ be continuous. For any $x_0 \in Z$ and $y_0 \in Y$ such that $f(z_0) = p(y_0)$, there is a unique lift $\tilde{f}: Z \to Y$ such that $\tilde{f}(z_0) = y_0$.

We will prove this next time. First, here are examples.

Example 1.1. Let $Y = \mathbb{C}$ and $X = \mathbb{C} \setminus \{0\}$. Then $p(z) = e^z$ is a covering map. If $f \in \operatorname{Hol}(Z)$ is nonvanishing, then there exists a holomorphic lift \tilde{f} such that $e^{\tilde{f}} = f$.

Example 1.2 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ and $0, 1 \notin f(\mathbb{C})$. Then $f : \mathbb{C} \setminus \{0, 1\}$. We shall show that the disc D covers $\mathbb{C} \setminus \{0, 1\}$:

$$\begin{array}{c} \tilde{f} & D \\ \downarrow^{p} \\ \mathbb{C} \xrightarrow{f} & \mathbb{C} \setminus \{0,1\} \end{array}$$

Then $\tilde{f}: \mathbb{C} \to D$ is constant, as it is bounded and entire. So f is constant.